Technology Systems Programme

4.) FERRO-FLUIDS R&D PROGRAMME - NEW INITIATIVES

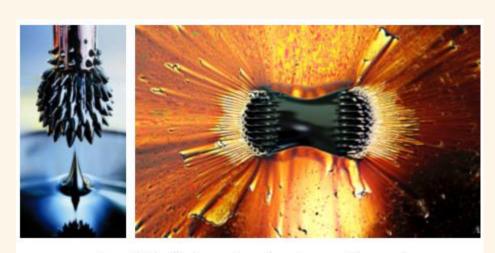
In the quest for novel domains of S&T exploration, FERROFLUIDS is found to be an exciting area of scientific and technological pursuit with excellent academic interests, research opportunities, developmental challenges, application avenues, device innovation prospects, and business openings etc. In the global scene, monumental work is done in Ferrofluids, their Flow Behavior, Magneto Rheological Fluids, Magneto Rheological Fluids, Magneto-Hydro Dynamics, Magnetic Ionic Liquids and many associated areas of ferrofluids in terms of synthesis, characterization, application areas, device innovation and development. May patents have been filed and good number of commercial activity is also in progress, using the fruits of S&T pursuits in this area.

In India, a number of groups (in academia, R&D laboratories, industry) have been active in R&D in different aspects of ferro-fluids and have done pioneering work. However, for achieving major breakthroughs, it is necessary to combine the expertise of various groups in a harmonious manner to achieve challenging goals. Hence, to optimize the benefits of the R&D groups pursuing the areas of ferrofluids, Department of Science & Technology (DST), Government of India has conducted Brain-Storming Session "FERRO FLUIDS: S&T & APPLICATIONS" at the CSIR-Central Scientific Instruments Organisation, Chandigarh. The aims were: a) to identify R&D groups keen to participate in a national coordinated program b) to identify specific areas to be pursued and d) to formulate a road map for this Ferro-Fluid R&D Programme in the country.

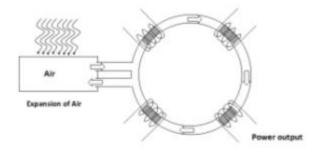
About FORTY FOUR delegates have participated in this session, with SIXTEEN Concept Papers submitted, presented & discussion. Based on the deliberations at the session, it was decided that R&D work should be carried out in the following areas: 1) Materials: Synthesis & Characterization; 2) Ferro Fluids: Applications for Energy Sector and 3) Ferro Fluids for Strategic Applications.

Accordingly, project proposals were prepared by the identified groups and forwarded for a preliminary scrutiny by a select committee headed by Prof. Krishan Lal, followed by the groups' interaction with the committee. The project proposals were suitably refined as per suggestions of this interaction and were submitted to DST for funding. DST has scrutinized these project proposals and has sanctioned the following R&D Projects with respective details. In each project, the investigating teams have identified clearly their respective Collaborators, User Agencies, Other Beneficiaries and the Industries involved and finally following projects were supported:

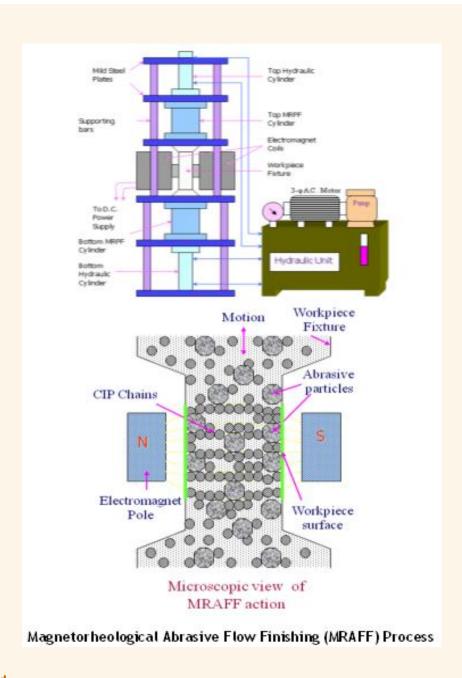
A) Materials: Synthesis & Characterization:


- Ferro Fluids: Science & Technology Application at Charotar University of Science & Technology-CHARUSAT, Gujarat
- Preparation & Characterization of Ferro-Fluids for Energy Conversion Application at CSIR-National Physical Laboratory, New Delhi

B) Ferro Fluids: Applications for Energy Sector:

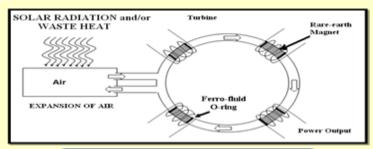

Development of solar power generator using rare-earth magnets & ferro-fluids at Amity University,
 Noida

C) Ferro Fluids for Strategic Applications:

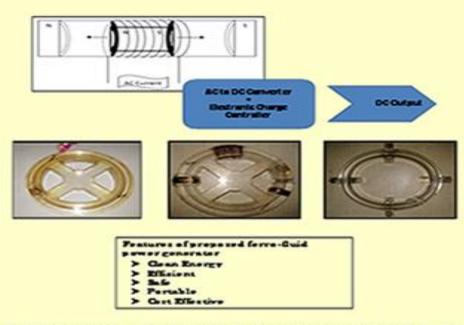

- Exploration of ferro-fluids for strategic applications: Athermalization in advanced optical systems at
 CSIR-Central Scientific Instruments Organisation, Chandigarh & Bhavnagar University, Gujarat;
- Design and Development of CNC Magneto-Rheological Finishing (MRF) system at Indian Institute of Technology, Delhi
- Exploration of ferro-fluids for magneto-rheological finishing in advanced optical systems with strategic applications at CSIR-Central Scientific Instruments Organisation, Chandigarh & Bhavnagar University, Gujarat .

Ferro Fluid collects near the poles of a powerful magnet

Solar Electric Power Generator using Ferrofluid - Concept


DEVELOPMENT OF SOLAR POWER GENERATOR USING RARE-EARTH MAGNETS AND FERRO FLUIDS

Objectives: — To develop solar power generator using Ferm-Fluids and Raze-Earth Magnets.


Mothe delegy: - To design, fabrication and optimisation of various parameters of solar power generator.

Delicerables: —A prototype Solar Power Cenerator using Solar Thermal Energy, Ferro-Fluid and Rase-Easth magnets. This is the new concept and it will provide the different type of power generator using solar energy. The work will also produce the trained manpower in this area of ferro-fluids.

In this project the principal of levitation of the magnets with the help of neno magnetic fluid is used. Using faxer-fluid, the friction between magnet and the walls of the generator circular tube will become extremely low. Due to the very small friction the magnets mates will very high speed with a small pressure of sir. The continuous motion of these magnets will be provided with the help of expansion of the six due to solar thermal energy. The continuous motion of the rare-seath magnets inside the coils will produce electric power.

Development of Solar Power Generator Using Rare- Earth Magnets and Ferro Fluids

Parject Investigators: - Dr. Abbahab Verma, Ambrent Professor and Dr. V. X. July. Professor, Amby Invitado of Renovable and Alternative Energy (AIRAE), Amby University, Sententials, Nation 201, 1981; Profesio.

B.) FERRO FLUIDS: S&T & APPLICATIONS: Up-scaling of tailor made magnetic fluids & its characterization for different applications: Coolant, Damper, Seal, etc. by Dr. R V Upadhyay, CHARUSAT University, Changa, Gujarat.

The adoption of magnetic fluid for various applications like damper, coolant, etc. are far from being optimized due to the variable performance of magnetic nanoparticles systems especially during large scale production. Herein, we aim to tune a reproducible and potentially scalable magnetic fluid for damper and coolant applications.

i5-P CNC MRF

Redefining Finishing Through 5-axis CNC MRF System

- Improved MR Fluid Delivery System.
- 5-axis CN C MRF Controller

Indigenous design and development of World's 1st CN C Ball end Magnetorheological Finishing (MRF) system for 3D

Nano-finish Materials

- Hi Cr Steel
- ⊳ StainlessSteel

surface finishing.

- Copper
- Aluminium
- Polycarbonate
- ▶ Glass

→ Silicon

Patented Technology by I.I.T. Delhi

Funding under "Technology System Development" (TSD)" scheme on Ferro-fluids by DST.

Department of Mechanical Engineering, H.T. Delhi

Email: suniljha@mech mtd.ac.in 1

.

i5-P CNC MRF Assembled Tool Head

Department of Mechanical Engineering, I.I.T. Delhi.

2

i5-P CNC MRF System

Technical Specifications

Table size L (mm) X VV (mm):	840x70
•X axistravel (mm):	150
•Yaxistravel (mm):	150
•Zaxistravel (mm):	300
•Rotary Table gear Ratio 18	80:1
•Spindle speed (rpm): 200-3000	
Spindle motor power (KW):	0.67
•Feed motor: Servo I	Motors
•X-axis torque (Nm):	35:-:-

- •X-axistorque (Nm): 35 •Y-axistorque (Nm): 35 •Z-axistorque (Nm): 35
- Ball lead Screw (diameter mm / pitch mm):
 16/5

- PC Based CNC controller Software developed on Parker Motion Controller
- Fully automated MR-fluid delivery system and process control
- MR-Finishing Tool with 5 mm and 10 mm Dia
- · Achievable surface finish: 1 nm

Department of Mechanical Engineering, I.I.T. Delhi.

3

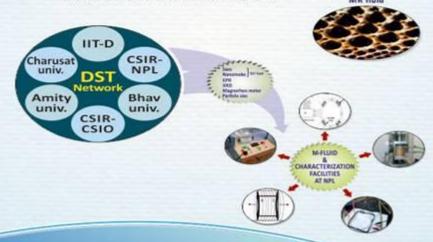
Other Activities

Department of Mechanical Engineering, I.I.T. Delhi.

D.) DST - National Network Program on Ferrofluid

Ferrofluid-Nanotechnology: colloidal dispersion of magnetic nanoparticles size 10 -20 nm.

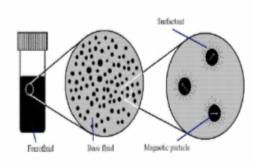
Ferrofluid Activity CSIR- National Physical Laboratory DST National Network Project Programme



Surfacted ferrofluid

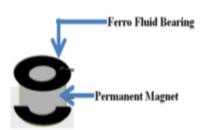
Preparation and Characterization of Ferrofluids for Energy Conversion Application

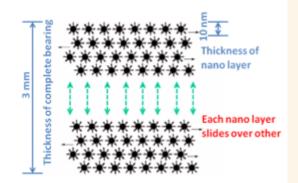
- AIM: 1. Ferrofluid Preparation and Characterization
 - 2. To Provide ferrofluid & Characterization facilities to other network projects
 - 3. Development of Energy conversion devices: µW-mW power generator; Sensors: Temparature, Vibration & Optical.

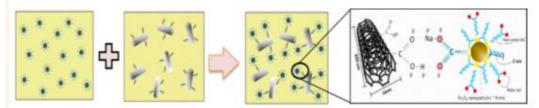


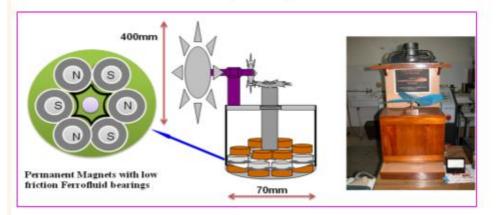
Technology Development and Transfer (TDT) Division Department of Science & Technology (DST) New Delhi –110016, www.dst.gov.in

CSIR-NPL (www.nplindla.org)


Ferrofluid Network Project CSIR-National Physical Laboratory


- Ferrofluid Synthesis and Characterization
- ➤ Energy conversion devices- sensors and power generator


Chain formation of ferrofluid particles with magnetic field works as a liquid bearing of very low coefficient friction for various applications.



We at NPL have developed verities of ferrofluids and tailored the properties suitable for application. Utilizing these unique properties we at NPL have developed a portable ferrofluid electric power generator and also sensors.

• Functionalised CNT based Ferrofluid (Filed US Patent 1673 DEL 2014)

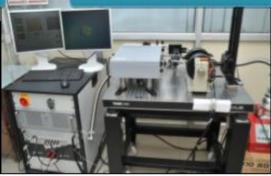
• Ferrofluid based electric power generator

• Milli watt power generator

Ferrofluid Facilities at NPL

XRD

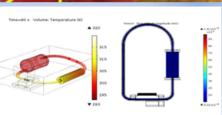
PSA



Magneto-rheometer

Nano MOKE -3

Electron Paramagnetic Resonance



EXPLORATION OF FERRO-FLUIDS FOR STRATEGIC APPLICATIONS: ATHERMALIZATION IN ADVANCED OPTICAL SYSTEMS

Ferro Fluid Based Liquid Cooling System

Ferrofluid based Smart Miniature Cooling System is a cooling device which utilizes heat and magnetic field to dissipate heat from the circuit or heat source. Traditional devices have certain limitations in terms of heat, vibration, noise and at the same time they require power from working system to dissipate heat. The purposed work discusses a novel technique which is truly 100% passive without conventional cooling components and thereby enhancing the reliability. The invention makes use of high heat transfer coefficient and natural circulation caused by the magnetic pump of ferrofluid so as to constitute a high performance cooling. device. The heat transfer can be scaled depending upon the heat. load and space constraints. The invention of Ferrofluid based Smart miniature cooling system, adapted for dissipation of heat generated from heat source (electronic device), which comprises, micro-fin arrangement for high heat removals mounted directly on the cooling setup.

Funding under "Technology System Development (TSD)" Scheme on Ferro-fluids by DST, New Delhi

Optical Devices & Systems, CSIR-Gentral Scientific Instruments Organisation, Sec 30/C, Chandigarh, Email: harry.garg@csio.res.in

EXPLORATION OF FERRO-FLUIDS FOR STRATEGIC APPLICATIONS: ATHERMALIZATION IN ADVANCED OPTICAL SYSTEMS

Features

Removal of heat using heat transfer coefficient & thermal conductivity of fluid

- ■True 100% passive cooling system
- Virtual magnetic pump (Magnet)
- Efficient for Miniaturized Systems or Microsystems
- Customized Horizontal & Vertical Systems
- Less weight and aesthetic looks
- Less components

Specifications

Working range (Flux) :50-100W/cm²

Operating temperature :45-90℃

Heat Transfer Coefficient :10000W/m²K

Size (customized) :01.6x63.5x25.4mm

Material :Copper and Aluminum

Weight :400-500gm

Flow rate :10-18ml/min

Magnet

Applications

:Permanent

Industrial Interactions

- Participated in the Bangalore International Exhibition 2014
- Actively talking to ISRO for application in Miniaturized Systems.
 Already held discussions & presentations at ISRO.
- Active Talks with Thermosen, Bangalore for Technology Transfer.
- Talks are going on with 5Nos of Indian Companies for solutions & applications to their Technology.
- Electronic passive cooling
- Computer passive cooling
- Customized Miniature cooling

Optical Devices & Systems, CSR-Central Scientific Instruments Organisation, Sec 30KC, Chandigarh, Email: harry.garg@csio.res.in